A Fast Start Base on Lanczos Algorithm for Symmetric Nonnegative Positive Definition Matrix Factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Effective Algorithms for Symmetric Nonnegative Matrix Factorization

Symmetric Nonnegative Matrix Factorization (SNMF) models arise naturally as simple reformulations of many standard clustering algorithms including the popular spectral clustering method. Recent work has demonstrated that an elementary instance of SNMF provides superior clustering quality compared to many classic clustering algorithms on a variety of synthetic and real world data sets. In this w...

متن کامل

On Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices

Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...

متن کامل

Symmetric Nonnegative Matrix Factorization for Graph Clustering

Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...

متن کامل

SVD based initialization: A head start for nonnegative matrix factorization

We describe Nonnegative Double Singular Value Decomposition (NNDSVD), a new method designed to enhance the initialization stage of nonnegative matrix factorization (NMF). NNDSVD can readily be combined with existing NMF algorithms. The basic algorithm contains no randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the ...

متن کامل

Simplicial Nonnegative Matrix Tri-factorization: Fast Guaranteed Parallel Algorithm

Nonnegative matrix factorization (NMF) is a linear powerful dimension reduction and has various important applications. However, existing models remain the limitations in the terms of interpretability, guaranteed convergence, computational complexity, and sparse representation. In this paper, we propose to add simplicial constraints to the classical NMF model and to reformulate it into a new mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Engineering and Technology Research

سال: 2017

ISSN: 2475-885X

DOI: 10.12783/dtetr/iceea2016/6708